Discrete Painlevé equations for recurrence coefficients of orthogonal polynomials

نویسنده

  • Walter Van Assche
چکیده

The converse statement is also true and is known as the spectral theorem for orthogonal polynomials : if a family of polynomials satisfies a three-term recurrence relation of the form (1.2), with an > 0 and bn ∈ R and initial conditions p0 = 1 and p−1 = 0, then there exists a probability measure μ on the real line such that these polynomials are orthonormal polynomials satisfying (1.1). This gives rise to two important problems: ∗Research supported by INTAS Research Network NeCCA (03-51-6637), FWO projects G.0184.02 and G.0455.04, and OT/04/21 of the Research Counsel of K.U.Leuven.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Discrete Painlevé Equations for Recurrence Coefficients of Semiclassical Laguerre Polynomials

We consider two semiclassical extensions of the Laguerre weight and their associated sets of orthogonal polynomials. These polynomials satisfy a three-term recurrence relation. We show that the coefficients appearing in this relation satisfy discrete Painlevé equations.

متن کامل

q-Discrete Painlevé equations for recurrence coefficients of modified q-Freud orthogonal polynomials

We present an asymmetric q-Painlevé equation. We will derive this using q-orthogonal polynomials with respect to generalized Freud weights: their recurrence coefficients will obey this q-Painlevé equation (up to a simple transformation). We will show a stable method of computing a special solution which gives the recurrence coefficients. We establish a connection between the newfound equation a...

متن کامل

On Fourth-order Difference Equations for Orthogonal Polynomials of a Discrete Variable: Derivation, Factorization and Solutions

We derive and factorize the fourth-order difference equations satisfied by orthogonal polynomials obtained from some modifications of the recurrence coefficients of classical discrete orthogonal polynomials such as: the associated, the general co-recursive, co-recursive associated, co-dilated and the general co-modified classical orthogonal polynomials. Moreover, we find four linearly independe...

متن کامل

The relationship between semi-classical Laguerre polynomials and the fourth Painlevé equation

We discuss the relationship between the recurrence coefficients of orthogonal polynomials with respect to a semiclassical Laguerre weight and classical solutions of the fourth Painlevé equation. We show that the coefficients in these recurrence relations can be expressed in terms of Wronskians of parabolic cylinder functions which arise in the description of special function solutions of the fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005